Interval Observers For Discrete-time Systems

F. Mazenc, T.N. Dinh and S.-I. Niculescu

CDC Hawaii, USA, 2012

INRIA DISCO, L2S CNRS–Supélec.
Outline

- Introduction
- Time-invariant interval observers
 - Nonlinear systems
 - Linear systems
- Transformations of linear systems
- Time-varying interval observers
- Conclusion
- References
Introduction

- **Main advantage** of the technique: it allows to cope with uncertainties that are known to characterize some classes of systems.
Introduction

Interest of the discrete-time systems:

- Discretization techniques transform continuous-time systems into discrete-time systems.
- Systems with sampled data often lead to discrete-time systems.

Many researchers have constructed observers or dynamic output feedbacks for discrete-time systems: M. Boutayeb, M. Darouach, I. Karafyllis, C. Kravaris, M. Xiao, N. Kazantzis, C. Kravaris, A.J. Krener, Z.P. Jiang...
Introduction

We discovered that our work has been created simultaneously with:

First we construct time-invariant interval observers for a nonlinear discrete-time system under a specific condition.

Second we show how time-varying interval observers can be constructed for the linear time-invariant discrete-time systems.

→ **Key idea:** time-varying changes of coordinates that transform linear discrete-time systems into nonnegative systems.

Remark: fundamental differences between our work and F. Mazenc, O. Bernard (2011) because a continuous-time system \(\dot{x} = Ax \) is positive iff the matrix \(A \) is cooperative whereas a discrete-time system \(x_{k+1} = Ax_k \) is positive iff no entry of \(A \) is negative.

Time-invariant interval observers
Consider the system

$$x_{k+1} = \mathcal{F}(x_k) + w_k , \ k \in \mathbb{N},$$ \hspace{1cm} (1)

Assumption 1. There exists $\mathcal{F}_c : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ s. t.

$$\mathcal{F}(x) = \mathcal{F}_c(x, x) , \ \forall x \in \mathbb{R}^n,$$

(2)

\mathcal{F}_c is nondecreasing with respect to each of its n first variables and nonincreasing with respect to each of its n last variables and

$$\begin{cases} a_{k+1} = \mathcal{F}_c(a_k, b_k), \\ b_{k+1} = \mathcal{F}_c(b_k, a_k), \end{cases}$$

(3)

admits the origin as a GAS equilibrium point.
Theorem

Let the system (1) satisfy Assumption 1. Let \((w_k)\) be bounded by two known sequences \((w_k^+), (w_k^-)\): \(w_k^- \leq w_k \leq w_k^+, \forall k \geq 0\). Then the system

\[
\begin{align*}
 z_{k+1}^+ &= \mathcal{F}_c(z_k^+, z_k^-) + w_k^+, \\
 z_{k+1}^- &= \mathcal{F}_c(z_k^-, z_k^+) + w_k^-, \\
 z_{k_0}^+ &= x_{k_0}^+, \ z_{k_0}^- = x_{k_0}^-, \\
 x_k^+ &= z_k^+, \ x_k^- = z_k^-,
\end{align*}
\]

(4)
is an interval observer for system (1).
Discussion on this result:

- We proved that if F is of class C^1, then there exists an infinite family of functions F_c such that $F(x) = F_c(x, x)$.
- The restrictive part of Assumption 1 is the stability property of the system (3).
- Finding the function F_c which gives the tighter enclosures of the state vectors is an open problem.
- If a system can be transformed through a change of coordinates into a system that satisfies Assumption 1, then an interval observer can be constructed.
Corollary

Consider the system

\[
x_{k+1} = Ax_k + w_k, \quad k \in \mathbb{N},
\]

(5)

Assume that the matrix \(A^* = \begin{bmatrix} A^+ & -A^- \\ -A^+ & A^- \end{bmatrix} \) is Schur stable.

Let \((w_k)\) be bounded by two known sequences \((w^+_k), (w^-_k)\):

\[
w^-_k \leq w_k \leq w^+_k, \quad \forall k \geq 0.
\]

Then

\[
\begin{cases}
 z^+_{k+1} = A^+ z^+_k - A^- z^-_k + w^+_k, \\
 z^-_{k+1} = A^+ z^-_k - A^- z^+_k + w^-_k, \\
 z^+_0 = x^+_0, \quad z^-_0 = x^-_0,

 x^+_k = z^+_k, \quad x^-_k = z^-_k,
\end{cases}
\]

(6)

is an interval observer for system (5).
Question 1: If A is Schur stable, is the corresponding matrix A^* necessarily Schur stable?

If the answer to the question was positive \rightarrow construction of interval observers for any exponentially stable linear discrete-time system.

Unfortunately, the answer is negative, e.g., $A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$.

Question 2: If A is Schur stable, does it exist a linear time-invariant change of coordinate that transforms the system (5) into the another one to which the Corollary applies?

We conjecture that the answer is negative.

\rightarrow This motivates our main result!
Transformations of linear systems
Theorem

Consider the system

\[x_{k+1} = Ax_k, \quad k \in \mathbb{N}, \quad (7) \]

with \(x_k \in \mathbb{R}^n \), where \(A \in \mathbb{R}^{n \times n} \) is a Schur stable matrix. Then there exists a time-varying change of coordinates \(y_k = R_k x_k \), where \((R_k) \) is a sequence of invertible matrices s. t. there exists a constant \(c > 0 \) s. t., for all \(k \in \mathbb{N} \), \(|R_k| + |R_k^{-1}| \leq c \), which transforms (7) into a positive and exponentially stable linear system.
Time-varying interval observers
Theorem. Consider a system

\[x_{k+1} = \alpha x_k + w_k, \quad y_k = Cx_k, \]

\[(8) \]

s.t. there exists \(K \) s.t. \(A = \alpha + KC \) is Schur stable. Let \((w_k)\) be bounded by two known sequences \((w_k^+)\), \((w_k^-)\): \(w_k^- \leq w_k \leq w_k^+ \), \(\forall k \geq 0 \). Then there exists a sequence of invertible matrices \((R_k)\) and \(c > 0 \) s.t. for all \(k \in \mathbb{N}, |R_k| + |R_k^{-1}| \leq c \) and \(R_{k+1}AR_k^{-1} = \mathcal{E} \), where \(\mathcal{E} \) is a nonnegative matrix. Then

\[\begin{align*}
 z^+_{k+1} &= \mathcal{E}z_k^+ - R_{k+1}Ky_k + R_{k+1}^+ w_k^+ - R_{k+1}^- w_k^- , \\
 z^-_{k+1} &= \mathcal{E}z_k^- - R_{k+1}Ky_k + R_{k+1}^+ w_k^- - R_{k+1}^- w_k^+ , \\
 z^+_0 &= R_k x_k^0 - R_k^- x_k^0 , \\
 z^-_0 &= R_k x_k^- , \\
 x^+_k &= S_k^+ z_k^+ - S_k^- z_k^- , \\
 x^-_k &= S_k^+ z_k^- - S_k^- z_k^+ ,
\end{align*} \]

\[(9) \]

with \(S_k = R_k^{-1} \) is an interval observer for system (8).
Conclusion
We developed:

- a technique of construction of time-invariant interval observers for a family of nonlinear discrete-time time-invariant systems.
- a technique of construction of time-varying interval observers for linear time-invariant systems.

The key point: linear time-varying change of coordinates.

Many possible extensions: … discrete-time systems with delay… triangular systems…. systems with nonlinear globally lipschitz disturbances…
References

