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Abstract. Recursive relations are established between the coef®cients of the ®nite
past multistep linear predictors of a stationary time series. These relations generalize
known results when the prediction is based on in®nite past and permit simpli®cation of
the numerical calculation of the ®nite past predictors.
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1. INTRODUCTION

Multistep prediction problems appear in many time series applications including
forecasting in economics and geophysics, electric power load scheduling, and
predictive control of processes. Most often, the multistep prediction is accom-
plished with the `plug-in' method in which the multistep forecasts are calculated
from an initial model ®tted to the available data by repeatedly using the model
where the unknown future values are replaced by their own forecasts. This
method uses the initial model as if it were the `true' model generating the time
series. As, in practice, all ®tted models may be incorrect, a direct method for
multistep prediction which consists in ®tting a different model for each step may
be more appropriate; see Findley (1984), Bhansali (1996) and references therein.

This paper concentrates on linear models. The algorithm of Levinson (1946)
and Durbin (1960) allows us to calculate the parameters of autoregressive
models of increasing orders that minimize any h-step ahead prediction error
variance, h > 1. Therefore, it is possible to use the Levinson algorithm to ®t
the models, and, if the order of each autoregression is ®xed at a given value p,
the numerical complexity for ®tting s models is proportional to s.

When the indices of the data to be predicted are consecutive integers, it is
natural to ask whether the coef®cients of the multistep predictors can be
calculated more ef®ciently. The idea is to use some relations between the
prediction coef®cients which are not only order recursive like the Levinson
recursions, but are also step recursive. Step recursive relations exist when the
prediction is based on in®nite past ± see Box et al. (1994, Section 5.3) ± but
do not seem to be available when the past is ®nite.
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The purpose of this paper is to establish such relations that will appear as
being the ®nite past counterpart of the expressions in Box et al. (1994). Then,
an algorithm will be proposed for computing the multistep predictors when the
order of each predictor is ®xed at a given value p. This algorithm will be
shown to be numerically more ef®cient than the Levinson algorithm and than
the innovations algorithm in Brockwell and Davis (1991, Section 5.2). A pos-
sible application of this algorithm is speech recognition based on multistep
predictors. In speech analysis, the order p is a given integer in the range [8, 16]
(Markel and Gray, 1976).

2. PRELIMINARIES

Let (Xn)n2Z be a zero-mean, weakly stationary, univariate real-valued time series
with covariance function (ãn). (Xn) is de®ned on a probability space (Ù, F , P),
and L2(Ù, F , P) denotes the Hilbert space with inner product hX , Y i � EXY
and norm kXk �

���������
EX 2
p

. For any integers l, n satisfying l < n, we de®ne the
subspaces of L2(Ù, F , P),

H l,n � spfX k ; l < k < ng
Hn � spfX k ; k < ng

where spS is the closed linear span of elements of the set S in the norm of
L2(Ù, F , P). We denote respectively by Pl,n and Pn the orthogonal projection
operator onto H l,n and Hn.

We assume that (Xn) is purely nondeterministic, and hence has the mean-
square convergent moving average series representation

Xn �
X1
i�0

ciEnÿi

where En � Xn ÿ Pnÿ1 Xn, c0 � 1, and
P1

i�0c2
i ,1. Furthermore, we suppose

that (Xn) has the mean-square convergent autoregressive series representation

Xn � En �
X1
i�1

ai Xnÿi: (2:1)

Suf®cient conditions for the mean-square convergence of the series in (2.1) may
be found in Bloom®eld (1985). It is well known that the parameters (ci) and (ai)
satisfy the relations

a0 � ÿ1

ai � ÿ
Xiÿ1

j�0

ajciÿ j i > 1:
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Since (Xn) has an autoregressive representation, it results from Bloom®eld
(1985, Thm 1) that, for any h > 1, the in®nite past h-step predictor PnX n�h has
a mean-square convergent series representation

PnXn�h �
X1
i�1

ah
i Xn�1ÿi

where

ah
i �

Xhÿ1

j�0

cjai�hÿ1ÿ j � ÿ
Xi�hÿ1

j�h

cjai�hÿ1ÿ j i > 1 (2:2)

see also Wiener and Masani (1958, Thm 5.7). It should be noted that a1
i � ai for

all i > 1. The parameters (ah
i ), h . 1, can be calculated recursively using either

Equation (5.3.9) or Equation (A5.2.4) in Box et al. (1994, Section 5.3). These
relations are respectively

ah
i � ai�hÿ1 �

Xhÿ1

j�1

aja
hÿ j
i (2:3)

ah
i � ahÿ1

i�1 � chÿ1ai: (2:4)

When the prediction is based on a ®nite number of observations, say
(X k)1<k<n, two recursive methods are presented in Brockwell and Davis (1991,
Section 5.2) for computing the one-step predictor P1,n Xn�1. These are the
Levinson algorithm, which gives the coef®cients of (X k)1<k<n in the re-
presentation

P1,n Xn�1 �
Xn

i�1

a1
n,i Xn�1ÿi

and the innovations algorithm, which gives the coef®cients of (Xk ÿ
P1,kÿ1 X k)1<k<n in the orthogonal expansion

P1,n Xn�1 �
Xn

i�1

cn,i(Xn�1ÿi ÿ P1,nÿi Xn�1ÿi):

Moreover, it is shown how to use the innovations algorithm to compute the h-
step predictor for any h > 1, see Remark 4.2. In the following, we use the
representation

P1,n Xn�h �
Xn

i�1

ah
n,i Xn�1ÿi

and we denote by vh
n the prediction error variance

vh
n � kXn�h ÿ P1,n Xn�hk2:

RECURSIVE RELATIONS FOR MULTISTEP PREDICTION 401

# Blackwell Publishers Ltd 2001



3. RECURSIVE RELATIONS BETWEEN THE PREDICTION COEFFICIENTS

Propositions 3.1 and 3.2 derive, respectively, the ®nite past counterpart of rela-
tions (2.3) and (2.4).

PROPOSITION 3.1. For any step h > 1 and any order n > 1,

ah
n,i � a1

n�hÿ1,i�hÿ1 �
Xhÿ1

j�1

a1
n�hÿ1, ja

hÿ j
n,i i � 1, . . ., n: (3:1)

PROOF. Since h > 1

H1,n � H1,n�hÿ1

and then

P1,n Xn�h � P1,n � P1,n�hÿ1 Xn�h:

Therefore,

P1,n Xn�h � P1,n

Xn�hÿ1

j�1

a1
n�hÿ1, j Xn�hÿ j

�
Xhÿ1

j�1

a1
n�hÿ1, j P1,n Xn�hÿ j �

Xn�hÿ1

j�h

a1
n�hÿ1, j Xn�hÿ j

�
Xhÿ1

j�1

a1
n�hÿ1, j

Xn

i�1

a
hÿ j
n,i Xn�1ÿi �

Xn

i�1

a1
n�hÿ1,i�hÿ1 Xn�1ÿi

which is equivalent to (3.1) because (Xn) is nondeterministic. j

PROPOSITION 3.2. For any step h . 1 and any order n > 1,

ah
n,i � ahÿ1

n�1,i�1 � ahÿ1
n�1,1a1

n,i i � 1, . . ., n (3:2)

vh
n � vhÿ1

n�1 � (ahÿ1
n�1,1)2v1

n: (3:3)

PROOF. Since

H1,n�1 � H1,n � spfXn�1 ÿ P1,n Xn�1g
we have

P1,n�1 Xn�h � P1,n Xn�h � ë(Xn�1 ÿ P1,n Xn�1) (3:4)

where ë 2 R. Equation (3.4) is equivalent toXn�1

i�1

ahÿ1
n�1,i Xn�2ÿi �

Xn

i�1

ah
n,i Xn�1ÿi � ëXn�1 ÿ ë

Xn

i�1

a1
n,i Xn�1ÿi
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from which we deduce that

ahÿ1
n�1,1 � ë

and

ahÿ1
n�1,i�1 � ah

n,i ÿ ëa1
n,i for 1 < i < n:

This proves (3.2). It results from (3.4) that

kP1,n�1 Xn�hk2 � kP1,n Xn�hk2 � ë2v1
n:

Furthermore,

vh
n � kXn�hk2 ÿ kP1,n Xn�hk2

and

vhÿ1
n�1 � kXn�hk2 ÿ kP1,n�1 Xn�hk2:

Hence,

vh
n � vhÿ1

n�1 � ë2v1
n

which gives (3.3). j

To see the symmetry between (2.4) and (3.2), it should be observed that
ch � ah

1 for any h > 1. This results from the second equality in (2.2) and
a0 � ÿ1. On the other hand, the in®nite past relation which corresponds to
(3.3) is

vh � vhÿ1 � c2
hÿ1ó

2
E

where

vh � kXn�h ÿ PnX n�hk2

and

ó 2
E � kEnk2 � v1:

This relation is the recursive form of

vh � ó 2
E

Xhÿ1

i�0

c2
i :

REMARK 3.1. When (Xn) is a causal autoregressive process of order p,
ai � 0 for i . p in (2.1) and the relations (2.3) and (2.4) can be used to
calculate the ®nite past predictor P1,n Xn�h provided that the order n satis®es
n > p. Indeed, according to (2.4), ah

i � 0 for h > 1 and i . p, and then
Pn Xn�h 2 H nÿ p�1,n. Assume that n > p. Then

H nÿ p�1,n � H1,n � Hn
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and we have

P1,n Xn�h � Pnÿ p�1,n Xn�h � PnX n�h:

Thus

ah
n,i � ah

p,i � ah
i for 1 < i < p

ah
n,i � ah

i � 0 for i . p

and

vh
n � vh

p � vh:

4. CALCULATION OF THE h-STEP PREDICTORS

We now show how the relations (3.1), (3.2) and (3.3) can be used for computing
ef®ciently the h-step prediction coef®cients (ah

p,i) and the prediction error
variances vh

p for 1 < h < s, where p is a given order and s is a given ®nal step.
For h � 1, we can use the Levinson algorithm which calculates the

coef®cients (a1
n,i) and the variances v1

n for 1 < n < p. For h . 1, (ah
p,i) and

vh
p can also be computed with a Levinson type recursion by using also (a1

n,i)
and v1

n for 1 < n < pÿ 1. The algorithm is given in the following proposition.

PROPOSITION 4.1. For any step h > 1 and any order n > 1, we have

ah
n,n � ãn�hÿ1 ÿ

Xnÿ1

i�1

a1
nÿ1,iãn�hÿiÿ1

" #
(v1

nÿ1)ÿ1 (4:1)

ah
n,i � ah

nÿ1,i ÿ ah
n,na1

nÿ1,nÿi i � 1, . . ., nÿ 1 (4:2)

vh
n � vh

nÿ1 ÿ (ah
n,n)2v1

nÿ1 (4:3)

with vh
0 � ã0.

PROOF. From the orthogonal decomposition

H1,n � H2,n � spfX 1 ÿ P2,n X 1g,
we deduce that

P1,n Xn�h � P2,n Xn�h � è(X 1 ÿ P2,n X 1) (4:4)

where

è � hXn�h, X 1 ÿ P2,n X 1i
kX 1 ÿ P2,n X 1k2

: (4:5)

We note that kX 1 ÿ P2,n X 1k 6� 0 since (Xn) is nondeterministic. Now, we deduce
from the stationarity of (Xn) that
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P2,n Xn�h �
Xnÿ1

i�1

ah
nÿ1,i Xn�1ÿi

P2,n X 1 �
Xnÿ1

i�1

a1
nÿ1,i X i�1

kX 1 ÿ P2,n X1k2 � v1
nÿ1:

Therefore, (4.4) can be writtenXn

i�1

ah
n,i Xn�1ÿi �

Xnÿ1

i�1

ah
nÿ1,i Xn�1ÿi � èX 1 ÿ è

Xnÿ1

i�1

a1
nÿ1,i X i�1

which is equivalent to ah
n,n � è and

ah
n,i � ah

nÿ1,i ÿ èa1
nÿ1,nÿi for 1 < i < nÿ 1:

Hence (4.2) holds. Now, we deduce from (4.5) that

ah
n,n � Xn�h, X 1 ÿ

Xnÿ1

i�1

a1
nÿ1,i X i�1

* +
(v1

nÿ1)ÿ1

which is equivalent to (4.1). It results from (4.4) that

kP1,n Xn�hk2 � kP2,n Xn�hk2 � è2v1
nÿ1:

On the other hand, we have

vh
n � kXn�hk2 ÿ kP1,n Xn�hk2

and

vh
nÿ1 � kXn�hk2 ÿ kP2,n Xn�hk2:

Therefore,

vh
n � vh

nÿ1 ÿ è2v1
nÿ1

from which (4.3) follows. j

For each n and h, the calculation of (ah
n,i) and vh

n in (4.1)±(4.3) involves
2n� 1 products. Therefore, when (ah

p,i) and vh
p are computed for 1 < h < s

using Proposition 4.1 (algorithm A1), the numerical complexity is

N1 � s
Xp

n�1

(2n� 1) � p2s� 2 ps:

An alternative to algorithm A1 consists in computing (a1
n,i) for 1 < n

< p� sÿ 1 using (4.1)±(4.3), and then to compute for 2 < h < s, (ah
p,i) using

(3.1) where n � p, and vh
p with the relation
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vh
p � hXp�h ÿ P1, p Xp�h, Xp�hi � ã0 ÿ

Xp

i�1

ah
p,iãh�iÿ1: (4:6)

This is algorithm A2, the numerical complexity of which is

N2 � ( p� sÿ 1)2 � 2( p� sÿ 1)ÿ 2� p
Xs

h�2

(hÿ 1)� p(sÿ 1)

� p2 � 1

2
p(s2 � 5sÿ 2)� s2 ÿ 3:

To compare N1 and N2, we set ô � s=p. Then

N2 ÿ N1 � p3ô(1
2
ôÿ 1)� p2(ô2 � 1

2
ô� 1)ÿ pÿ 3:

If ô > 2,

N2 ÿ N1 > 6 p2 ÿ pÿ 3 � 2 p2 � ( pÿ 1)(4 p� 3) . 0 for p > 1:

Now, if ô � 1
2
,

N2 ÿ N1 � ÿ3
8
( pÿ 2)( p2 ÿ 2 pÿ 4

3
)ÿ 2 , 0 for p > 1:

Consequently, the choice of the method A1 or A2 depends on the pair ( p, s).
We now propose an algorithm whose numerical complexity is less than N1

and N2 for any pair ( p, s) with p, s . 1. This algorithm uses the order and step
recursive relations given in the following proposition.

PROPOSITION 4.2. For any step h . 1 and any order n . 1, we have

ah
n,i � ahÿ1

n,i�1 � ahÿ1
n,1 a1

nÿ1,i ÿ ah
n,na1

nÿ1,nÿi i � 1, . . ., nÿ 1 (4:7)

vh
n � vhÿ1

n � [(ahÿ1
n,1 )2 ÿ (ah

n,n)2]v1
nÿ1: (4:8)

PROOF. The relations (4.7) and (4.8) can be deduced from Propositions 3.2
and 4.1 by replacing n by nÿ 1 in (3.2) and (3.3) and by inserting the
corresponding expressions for ah

nÿ1,i and vh
nÿ1 in (4.2) and (4.3). Alternatively,

(4.7) and (4.8) can be deduced directly from the relation

P1,n Xn�h � P2,n Xn�h � ah
n,n(X 1 ÿ P2,n X 1)

� P2,n�1 Xn�h ÿ ahÿ1
n,1 (Xn�1 ÿ P2,n Xn�1)� ah

n,n(X 1 ÿ P2,n X1)

j

Algorithm A3 consists in computing (a1
n,i) and v1

n for 1 < n < p using
(4.1)±(4.3), and then to compute (ah

p,i) and vh
p for 2 < h < s using (4.1), (4.7)

and (4.8) where n � p. The numerical complexity of these calculations is

N3 � p2 � 2 p� (sÿ 1)(3 p� 1) � p2 � p(3sÿ 1)� sÿ 1:
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We have

N1 ÿ N3 � (sÿ 1)( p2 ÿ pÿ 1) . 0 if p . 1

and

N2 ÿ N3 � 1
2
ps(sÿ 1)� (sÿ 2)(s� 1) . 0 if s . 1:

Therefore, N3 , min(N1, N2) for any pair ( p, s) with p, s . 1.

REMARK 4.1. An alternative to algorithm A3 consists in computing (a1
n,i) and

v1
n for 1 < n < p� sÿ 1 using (4.1)±(4.3), and (ah

n,i) and vh
n for 2 < h < s

and p < n < p� sÿ h using (3.2) and (3.3). The numerical complexity of this
method (algorithm A4) is

N4 � ( p� sÿ 1)2 � 2( p� sÿ 1)�
Xs

h�2

Xp�sÿh

n� p

(n� 2)

� p2 � 1
2
ps(s� 3)� 1

6
(sÿ 1)(s2 � 10s� 6):

We have

N4 ÿ N3 � (sÿ 1)[1
2
p(sÿ 2)� 1

6
s(s� 10)] . 0 if s . 1

and therefore algorithm A3 is preferable to algorithm A4. On the other hand,
algorithm A4 calculates the coef®cients (ah

qÿh�1,i) and the variances vh
qÿh�1 for

1 < h < s where q is a given integer, q > s. The parameters (ah
qÿh�1,i) are the

prediction coef®cients of Ph,q X q�h and they involve only the covariances ãk for
0 < k < q. Furthermore, to calculate (ah

qÿh�1,i) and vh
qÿh�1 for 2 < h < s, it is

suf®cient to use (3.2) and (3.3) for n � qÿ h� 1.

REMARK 4.2. A different approach for computing the multistep predictors for
1 < h < s is to calculate (a1

n,i) and v1
n for 1 < n < p using (4.1)±(4.3), and

then to decompose the observation space H1, p as the sum of p orthogonal
subspaces for computing the h-step predictors for 2 < h < s. For any step
h . 1, P1, p Xp�h and vh

p are computed by the relations

P1, p Xp�h �
Xp

i�1

ch
i (X i ÿ P1,iÿ1 X i)

vh
p � ã0 ÿ

Xp

i�1

(ch
i )2v1

iÿ1

where P1,0 X1 � 0 and

ch
i �
hXp�h, X i ÿ P1,iÿ1 X ii
kX i ÿ P1,iÿ1 X ik2

� ã p�hÿi ÿ
Xiÿ1

j�1

a1
iÿ1, jã p�hÿi� j

24 35(v1
iÿ1)ÿ1:
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The number of products in these computations is p2 � 2 p for the Levinson
algorithm, iÿ 1 for P1,iÿ1 Xi, i for ch

i , and 2 p for vh
p. The resulting numerical

complexity is

N5 � p2 � 2 p� 1
2
p( pÿ 1)� (sÿ 1)[1

2
p( p� 1)� 2 p] � p2(1

2
s� 1)� p(5

2
sÿ 1):

We have

N5 ÿ N3 � 1
2
s( pÿ 2)( p� 1)� 1 . 0 if p . 1

and thus algorithm A3 is less complex than this algorithm. On the other hand, we
have

N1 ÿ N5 � p( pÿ 1)(1
2
sÿ 1) . 0 if p . 1 and s . 2:

REMARK 4.3. The Levinson algorithm gives the Cholesky decomposition of
the inverse of the covariance matrix [Ã p(i, j) � ãiÿ j, i, j � 1, . . ., p],

Ãÿ1
p � A9pÓ

ÿ2
p Ap

where Ap is lower triangular with Ap(i, i) � 1 and Ap(i, j) � ÿa1
iÿ1,iÿ j for i . j,

and Ó2
p is diagonal with Ó2

p(i, i) � v1
iÿ1. For any step h . 1, the coef®cients

(ah
p,i) can be computed directly by the relation

(ah
p,1, . . ., ah

p, p)9 � Ãÿ1
p (ãh, . . ., ãh� pÿ1)9 � A9pÓ

ÿ2
p Ap(ãh, . . ., ãh� pÿ1)9

and the variance vh
p can be calculated with (4.6). Then the global numerical

complexity for computing (ah
p,i) and vh

p for 1 < h < s is

N6 � p2 � 2 p� (sÿ 1)( p2 � p) � p2s� p(s� 1):

We have

N6 ÿ N3 � (sÿ 1)( p2 ÿ 2 pÿ 1) . 0 if s . 1 and p . 2:

Hence, except when p � 1 or p � 2, using algorithm A3 is preferable.

REMARK 4.4. It results from (4.3) that vh
n < vh

nÿ1. This inequality is also an
immediate consequence of the stationarity of (Xn) and of the inclusion
H2,n � H1,n. Furthermore, taking h � 1 in (4.3), we deduce that ja1

n,nj, 1. The
same inequality does not hold for ah

n,n when h . 1. Indeed, consider the causal
autoregressive process

Xn � a1 Xnÿ1 � a2 Xnÿ2 � En (4:9)

where En � Xn ÿ Pnÿ1 Xn, kEnk2 � ó 2
E . We have

P1,2 X 4 � (a2 � a2
1)X 2 � a1a2 X 1:

Taking a2 � ÿ1
4
a2

1, (4.9) is a causal model if ja1j, 2, and we get a2
2,2 � ÿ1

4
a3

1.
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Hence, if 4 , ja3
1j, 8, ja2

2,2j. 1, and if ja3
1j < 4, ja2

2,2j < 1. When the past is
in®nite, the inclusion Hn � H n�1 implies that the h-step prediction error
variance is a nondecreasing function of h. When the past is ®nite, no inequality
exists between vhÿ1

n and vh
n. Indeed, when a2 � 0 in (4.9), we have

P1,1 X 2 � a1 X 1

v1
1 � ó 2

E

P1,1 X 3 � a2
1 X 1

v2
1 � ó 2

E (1� a2
1)

and therefore v1
1 , v2

1. But, when a1 � 0 in (4.9), we have

P1,1 X 2 � 0

v1
1 � ó 2

E (1ÿ a2
2)ÿ1

P1,1 X 3 � a2 X 1

v2
1 � ó 2

E

and thus v1
1 . v2

1. Lastly, we deduce from (3.3) that vhÿ1
n�1 < vh

n. This inequality
also results from H1,n � H1,n�1.

REMARK 4.5. The results of this paper can be easily generalized to the case
where (Xn) is a m-variate time series as follows. The coef®cients (ah

n,i) are now
m 3 m matrices, and we de®ne

ãn � EX nX 90

and

vh
n � E(Xn�h ÿ P1,n Xn�h)(Xn�h ÿ P1,n Xn�h)9:

Propositions 3.1 and 3.2 hold if (3.3) is replaced by

vh
n � vhÿ1

n�1 � ahÿ1
n�1,1, v1

n(ahÿ1
n�1,1)9:

In contrast to the univariate algorithm, the multivariate Levinson algorithm
requires the solution of two sets of linear equations, one arising in the
calculation of the forward predictor P1,n Xn�1, and the other in the calculation of
the backward predictor P1,n X 0 (Whittle, 1963). Let (~a1

n,i) be the matrices such
that

P1,n X 0 �
Xn

i�1

~a1
n,i X i

and ~v1
n be the covariance matrix of the one-step backward prediction error,
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~v1
n � E(X 0 ÿ P1,n X 0)(X 0 ÿ P1,n X 0)9:

It can be shown that the relations in Proposition 4.1 become

ah
n,n � ãn�hÿ1 ÿ

Xnÿ1

i�1

ãn�hÿiÿ1(~a1
nÿ1,i)9

" #
(~v1

nÿ1)ÿ1

ah
n,i � ah

nÿ1,i ÿ ah
n,n ~a1

nÿ1,nÿi i � 1, . . ., nÿ 1

vh
n � vh

nÿ1 ÿ ah
n,n

~v1
nÿ1(ah

n,n)9:

On the other hand, the relations in Proposition 4.2 are now

ah
n,i � ahÿ1

n,i�1 � ahÿ1
n,1 a1

nÿ1,i ÿ ah
n,n ~a1

nÿ1,nÿi i � 1, . . ., nÿ 1

vh
n � vhÿ1

n � ahÿ1
n,1 v1

nÿ1(ahÿ1
n,1 )9ÿ ah

n,n
~v1

nÿ1(ah
n,n)9:
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